
UN LASSIFIED

io -1 i
firmed Services echnicall nforma ion Hgency

Reproduced by

DOCUMENT SERVICE CENTER
KNOTT BUILDING, DAYTON, 2, OHIO

This document is the property of the United States Government. It is furnished for the du-
ration of the contract and shall be returned when no longer required, or upon recall by ASTIA
to the following address: Armed Services Technical Information Agency,
Document Service Center, Knott Building, Dayton 2, Ohio.

NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA
ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED
GOVERNMENT PROCUREMENT OPERATION, THE U. S. GOVERNMENT THEREBY INCURS
NO RESPONSIBILITY. NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE
GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE
SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY
IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER
PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE,
USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.

UNCLASSIFIED



r\ ~f -I-f -

SQME MOLECULAR COLLISION INTEGRALS FOR POINT ATTRACTION

AND REPULSION POTENTIALS

by

M. A. Eliason, D). E. Stogryn, and J. 0. Hirschfelder

University of Wisconsin WIS-ONR- 19

5 March 1956

C o p y ___________________________

Contract N47-onr-ZSS1 I

Se--ies I and 2



SOME MOLECULAR COLLISION INTEGRALS FOR POINT ATTRACTION

AND REPULSION POTENTIALS

1
M. A. Eliason, D. E. Stogryn, and J. 0. Hirschfelder

ABSTRACT

If the pairs of molecules in a dilute gas interact with an intermolecular

energy of the form, d/r [ , the collision integrals which determine the

transport properties can be written

Here is the reduced mass of the colliding molecules. The following constants

are evaluated:

Repulsive Interaction Potential, d positive

A 1)(Z) = 0.397601 A(Z)(z) = 0.527843

A 1 (3) = 0.3115 A( 2 )(3) = 0. 3533

Attractive Interaction Potential, d negative

A(1)(Z) = 0. 806907 A( 2 )(2) = 0. 710970

A (1)(3) = 0.6750 A(3)(3) = 0.4641

The constants for o = Z were readily evaluated in closed form. The constants

for the repulsive potential with r = 3 were evaluated using an expansion develop-

ment of Mott-Smith. The constants for the attractive potential with 3 were

evaluated numerically making use of elliptic integrals for the angles of deflection.

For attractive potentials a singular point was encountered corresponding to orbiting.

This work is being done under the Office of Naval Research Contract N7-onr-Z8511.

J 0. Hirschfelder, C. F. Curtiss, and R. B. Bird, "Molecular Theory of Gases
and Liquids" (John Wiley, 1954), p. 547.

1 Fellow National Science Foundation.



SOME MOLECULAR COLLISION INTEGRALS FOR POINT ATTRACTION

AND REPULSION POTENTIALS

M. A. Eliason, D. E. Stogryn, and J. 0. Hirschfelder

University of Wisconsin Naval Research Laboratory
Madison, Wisconsin

The transport coefficients for a dilute gas made up of molecules which have

a potential energy of interaction of the form

can be expressed in terms of the constants A ( -) , when d is positive and

the molecules repel each other; or in terms of the analogous constants C ( ),

to be defined below, when d is negative and the molecules attract each other. In

this paper, the values of A(') ( ) , A(2)) , C(1 (F,) and C )(S ") are

calculated for [ = 2 and F = 3.
2

Although the second virial coefficient would be infinite in each of these cases,

the transport coefficients are finite. The evaluation of the collision integrals is not

difficult for either of the repulsive cases. When F = 2, A '1 (2) and A"' (2.)

may be expressed in closed form. When F = 3, a formulation of Mott-Smith 3 may

be used to obtain a rapidly converging infinite series for these collision integrals.

The integrals resulting from the attractive potentials are somewhat harder to evalu-

ate because of the spiraling of the molecules in collisions where the impact para-

meter is less than a critical value.

J. 0. Hirschfelder, C. F. Curtiss, and R. B. Bird; "Molecular Theory of Gases
and Liquids"; (John Wiley, 1954); p. 546.

We find that for either attractive or repulsive point forces, the A (i) and C 0)
are infinite. The second virial coefficients (MTGL, Ref.,l, p. 156) are infinite.
for either attractive or repulsive potentials if is not greater than 3.

oH. M. Mott-Smith, "A New Approach in the Kinetic Theory of Gases", M. I. T.
Lincoln Laboratory, Group Report V-2 (December, 1954).



-2-

When = 2, this spiraling results in an infinite angle of deflection whenever

the impact parameter is less than the critical value, and causes singular behavior

in a part of the collision integral. This part of the integral is approximated, and

the remainder is obtained in closed form.

For - 3, the critical impact parameter corresponds to a singular point

in the collision integrals. The asymptotic behavior in the vicinity of the singular

point is investigated and the integrals are evaluated numerically. Use is made of

the fact that with b = 3, the angle of deflection is simply etpressable in terms of

incomplete elliptic integrals of the first kind.
4

The collision integrals are defined in the following way. The collision of

two molecules is considered as the equivalent one body problem. A particle with

reduced mass p = /'i 21 approaches a fixed center of force with initial
4 ,4 wz

speed g and impact parameter b. The potential energy of interaction is given by

Eq. (1), where d is a constant, and r the distance of the incoming particle from

the scattering center. Figure 1 shows the trajectory. The particle is deflected

through an angle of deflection ( and the distance of closest approach is rm

Now, if we define

the angle of deflection may be written as a function of yo

IT _y (3)

4 MTGL, Ref. 1, p. 546. It should be noted that our f () and that of MTGL

are equal to 2 -  V ') where the A/E+1) are the collision integrals of

S. Chapman and T. Cowling, "The Mathematical Theory of Non Uniform Gases"

(Cambridge Press, 1939), p, 172,
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center of force A,,

Fig. 1 Trajectory for repulsive potential.

center of force

Fig. 2 Trajectory for attractive potential.

Case where particle passes through center of force.
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The upper limit on the integral is the first positive root of the polynomial in the

denominator of the integrand.

Then the collision cross-sections for the various transport properties are

given by e /

P g (4)

II

where the molecular collision integral, A( () is given by

)

When the potential is attractive, d = -a and the potential has the form

(r') = - a r - 9 6

Also, let us define

(7)

It is easily seen that with (3 , which is a real, positive quantity, Eq. (3) becomes,

for an attractive potential

1 (8)
If is grete t-han_, -

If / is greater than # crit' the polynomial in the denominator of the integrand has

a first positive root, ym('6 ). However, if /6 is less than 13 crit' Ym (3) = Co

corresponding to the fact that the incoming particle actually passes through the

center of force, r = 0, and then goes out again. In this case, the angle of deflec-

tion is given by

(9)

rather than by eq. (8). Such a trajectory is shown in Fig. Z.

For the attractive potentials the various collision cross-sections are given

by

-1 C ()(10)
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where

00

I. Centers of Repulsion

For repulsive potentials, when E is 2 or greater, the (g) are finite.

The case of = 1, however, is a potential of sufficiently long range that the integral

fot A)(/) is infinite. In this case, the angle of deflection is

and the integral in Eq. (5) diverges.

(a) = 2.

The repulsive, inverse square potential is of interest because the integrations
5

may be carried out analytically. First of all, the angle of the deflection from

Eq. (3) is

i3'
- ~ ~ .fi(+ g- 2 ty (13)

Let x = 2y ;then y = (1+1)- -

(14)

The evaluation of A(1)(2) and A)(Z) was carried out by John S. Dahler with the
help of Donald W. Jepsen.
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With this change of variables, Eq. (5) becomes

00 

j()

Now let x = z / ( 1 - , then I = 17"( 1 - z). Substituting into Eq. (15)

and integrating by parts

(,o -7 f (.16)

A' 7 (17)

But it is easy to show that

7- Z T)(18)

where 6

- Xo 4 (19)

Thus we obtain

A (2) = 0.397601 (20)

A (Z ) = 0.5Z7843 (21)

6 "Tables of Sine, Cosine, and Exponential Integrals", Vol. II, WPA (Federal
Works Agency, Works Progress Administration for the City of New York.)
(1940).
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(b) = 3.

In the case of the inverse cube repulsive potential, we were able to make use
3 (AQ

of a method which has been developed by Mott-Smith to evaluate the A (')

Through the application of Bttrmann's Theorm 7 he has found that Eq. (5) can be

written as

A, (y = f (- x) F (7) AL; x (
(2z)

where the F ( X ) sin' is given by

p=O

The D are constants, depending only on

with the H(2) given by

1-1(z) --2 (E z'1 (-,)t (S) F ( -, (-s + ,)0-- ;t +o
H~ (2. 5)Zz t - 3 -1s(5

For = 3, we obtain the results given in Table I.

Table I

The Mott-Smith Coefficients DO for 3

~D/

0 0. 25438
1 0. 12487

Z 0.01019
3 -0.00Z8Z
4 0.00317

7 E. T. Whittaker and G. N. Watson: "A Course of Modern Analysis"; 4th Ed.
(Cambridge University Press) (1952) p. 128.
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Substitution of Eq. (Z.3) into Eq. (22), and integration gives the general

expression

DT (-)
=~~ /o4j le e V~41m (26)

The two cases which are of interest are then

( oI+

A 3)=De~p (Z (2)

Thus we obtain

A ( i ) (3) = 0.3115 (29)

AM2 ) (3) = 0.3533 (30)

II. Centers of Attraction

When the potential is attractive there is a singularity in the expression for the

angle of deflection. The Mott-Smith formulation is no longer applicable so we

proceed as follows.

There exists a critical value of b = b for any relative kinetic energy
c rit

_L 2 such that for b less than b there are no positive roots to the

e quatio n

f(y) = I - 1 + = 0 (1)

where

c _ (32)
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and for b = b crit , c = Ccrit , This critical value may be obtained by noting

that Eq. (3 1) has a double root at the critical value. Therefore, both f(y) and

f (y) vanish for the same positive root, y crit

f 2-- 0 T r (33)

One may combine Eqs. (31) and (33), to solve for this root

a (34)

and then go back and obtain the critical value of c

-- L -2 (35)

Thus

---- (36)

(a) = Z.

For the attractive case, with = 2, the angle of deflection is, from

Eq. (8) and (9)

and

-2 2 (38)
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Thus,

-)~~ ~ ((39)~' ,YQ 1 ~ -/ F#~2~ 2

- < (40)

In spite of the infinite value of the angle of deflection for all values of

less than . one may still obtain the collision integrals. Eq. (11) is split into

two parts

( G.0) + k 00/

(41)

The second of these, the , are obtained in closed form. Taking the expres-
sion for X from Eq. (39), and letting x = (1- iL, - ,.2, it is found that

H (1) C1_ : 2 (.42)

(2) CO t (43)

These expressions may be integrated by parts to give

71r C) ...
H )2 (44)

H (2) - 4-A ly (45)
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These may be rewritten as

f~ ~ - .Ax (46)

H = )- f6 (47

The first integral in each case is found in Bierens de Haan , and second we found

in the evaluation of AM (Z) and A ( 2 ) (2). Thus

( • C'ir (/7) Se ,I]4 r

H Stm -(48)

H(Z E - C -]C(2f)AAf -J - &7) + A~n-~(~ (49)

Therefore,

H t. ( ") 0.556907 (50)

5) (vq) 0.585970 (51)

The values of the integrals G (  may be approximated in the following way.

G (52)

8
D. Bierens de Haan, "Nouvelles Tables D'Integrales Definies", (G. E. Stechert
and Co., 1939), Table 161, 3.

0 PX f

G; (p ) = -"
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If the upper limit on the integral for the angle of deflection is taken to be an arbi-

trarily large, but finite number Z,

ze - (53)~~T+~2/z2~

With this expression for the angle of deflection, the integrand of Eq. (5Z) is a

very rapidly oscillating function of . ; oscillating between 0 and 2 for G
and between 0 and 1 for &). As 72 becomes very large, the peaks become

very close, and the average value of the integrand becomes very close to 1 for the

and to 4 for the G 2 . Thus, in the limit that Z becomes infinite, cor-

responding to the actual kinetic theory problem,

= -(54)

G (2) (55)

Thus we obtain

C ; =  - * 0.806907 (56)

C = ) + l) 0.O710970 (57)

(b) =3

In the case of the inverse cube attractive potential, 1ct. 1/6 and

y ( ) varies from unity for = c to yrm(icrit) = . Because of the

singular point it is convenient to divide the integration of C )(3) into two parts

(3) (3) + C (58)
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where

,((3) = - f- -'(59)

60

Here (9 1 and z are given in Eqs. (9) and (8) respectively.

In evaluating C 1( 1 )(3) it is convenient to change the variable of integration

from z to q to q where q is minus the (only) real root of the polynomial

in the denominator of Eq, (9)

,3 cJL~~(1 ~'/J(61)

Since the real root is negative in the range 0 ( < a < (.) 1/3 q is positive,

Making the change of variables,

37 +
+ (6 Z)

9
which is an incomplete elliptic integral of the first kind

Thus,

(~5~j ~(63)

where - _

I ~ (64)

4- --" (65)

P. F. Byrd and M. D. Friedman, "Handbook of Elliptic Integrals for Engineers

and Physicists", (Springer, 1954), p. 88, Eq. a41.00.
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S i n e C - _ -t h e f i r s t i n t e g r a l , C ( 3 ) i sSince ral,: C /~)

now given by

( ,) ( 6 7 )

Figs. 3 and 4 show the integrands for = 1 and for ) = 2 respectively
2

as functions of q .

It is seen that the integrands oscillate wildly as q approaches 0. 75. The
2 2

integrals are subdivided into four ranges of q . For the smaller values of q

numerical integration is satisfactory making use of the elliptical functions. How-2

ever, for the larger values of q it is convenient to use Z 0 as the integration

variable and develop approximate expressions for which will allow

analytic evaluation of the required integrals. Thus, C ((3 ) is divided into the

ranges 0 q 5 Z.5, .52 z q e .68,.68 q .748, and

.748 < q -' .75.
(As 0o ) (A)-/c

C--4T + T (68)

where

I -_ __-_-_7- , 2.. , 1 o
S I - . (2  (,3_ -- 16 (69)

Ti (A/1)(0/f 7701-1 cr($i). .
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36-

28-

Iat

~r
20-20

C14

0

0 .05 .10 .15 .20 .25 .30 .35 .qc H5 350 5.5 .60 .65 'TO .75

Fig. 3 Integrand of C1 '(3) from Eq. (67).

2q

20-

0
r4

0
0 .05 .10 .15 .20 .25 .30 .35 q~O q~5 .50 Z55 60 .65 .70 .75

Fig. 4 Integrand of C (Z) 3 from Eq. (67).
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The integrals 1(1) and i(2) were evaluated numerically using Simpson's
1 1

Rule with interval sizes of .04 in q2 from 0 E qZ .40 and intervals of .0Z
2 2

for larger values of q . The integrands were evaluated at these values of q by

making use of Eqs. (63) and (67) together with interpolated values of the elliptical

integral. Four point Lagrangian interpolation coefficients were used to interpolate
10

along both the rows and the coluinns in the table of Byrd and Friedman. Thus we

obtained

I ( . z449 (73)

11(Z) = 1136 (74)

An expression for -- , sufficiently accurate in the interval

9. 1OZ88 is obtained by fitting the curve of cr it. 3 vs.

ZO,, with a cubic equation. (See Fig. 5 for a plot of 2 crit. - 9  v

D + £( ,) F ()(75)

The points

Z 1 5.87Z92 6.74996 7.94016 9. 10288
2 2
crit - Z .500778 .411380 .300569 .Z09800

q .5Z .58 .64 .68

are used to evaluate the constants in Eq. (75). The constants are D = 1.06ZIZ9,

E = -. 0640403, F = -. 009ZZ55, and G = .0006563. With these constants,

Eq. (75) fits the actual curve better than .05% in the region of interest.

10 Ref. 9, pp. 324.
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Integration of Eq. (70) gives

+i - 3 ,

2F (1)0 -- o lOZO (76)IE F = P69 (-9)

(76)

We obtained 
I 

follows:

12o (1.(6 ) - 1020(78

12 (Z) - 0690 (79)

The integrals I U)and I U)are evaluated with the aid of an asymptotic

expression for 2z d (p Z) / d(20] accurate near 16 crit. * The asymptotic form

for 0 as q approaches .75 may be obtained as follows:

From Eqs. (63) and (64),

( -k T (80)

As q .75, k->l and 1O, Since 1

e 9 . ,T - (81)

F7%)) Z r(0 0 , ').(82)

11 Ref. 9, p. 12, Eq. 113.02
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If k' = (I - k the expansion for K (k) is

K(k ) - ( L k - k '" (83)

Since k = 1,

(84)

-
(85)

If the substitution q - z is made,

~(,J - - Z + '(86)

and

44 +
z1  L(87)

Therefore,

(88)

Since

-- )(89)

-- (90)

Ref. 9, p. Z98, Eq. 900.05

See Appendix A for an alternate derivation of this equation.
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c Up9,) - e 9-(91)

From Eq. (61), it is found that asymptotically

3 
(92)

Therefore,

J 2) ?C(/' (;- /75 - kZ 52 3 -c ' . (93)

1 (94)

(95)

This suggests approximating 2 by an equation of the form

crit. 2 .[ + C(2 (96)

over the range 9. 10288 5 2 i 16. 91616. The points

20 1 9. 10288 11.74086 16.91616

Z 2
/3 crit .Z09800 .0780498 .0072236

q2  .68 .727 .748

are used to evaluate the constants in Eq. (96). The constants are A = -30. 419284,

B = 7. 524143, and C = -. 219515. Eq. (96) fits the actual curve better than . 5%

in the region of interest. Eq. (71) may now be integrated analytically; the results



are:2

"> - ' 0, j[ +l. ,+cce)J }

- ,A -O,3,3 +C/ 2 ,C)

-f 6- 6,2/ , O7 0#C)

. (94)

e ( , 2 - uo 7 .C)( . ) + OycU,,1/7R I- (A,6) (94)

L [(,$1ql.4/ -6,/107 7~ [t .OI4dc)

I2(95)

Thus we obtained

3 = .1217 
(96)

(2)
13 = .0444 (97)

The integrals 14(1) and 14( are evaluated with the help of Eq. (93).

T ,=- / ~-: (98)

T 4 = k I -L , 7-7(z 00 99 )+ = 9V/ /6 (99)
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Thus we obtained

4(1) .00Z6 (100)

14(Z) = 00zz (101)

From Eqs. (68), (73), (78), and (100) and Eqs. (68), (74), (79), and (101)

respectively, we obtained

c 1 ()(3) = .471z (102)

c.9(3) (9Z (103)
1

To evaluate the C (3) as defined in Eq. (60), it is convenient to change
2 2

the variable of integration from / to p ,where p is the first positive root

of the denominator in equation (8)

13 3 (r2O)- (104)

Since y( 1 ) = p, it follows that

3(105)

which is another elliptic integral of the first kind. 13

Thus

~ (j) gIT7 )~I)(106)

where

(177)

13Ref. 9, p. 74, eq. 234. 00.
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''~''''r(108)k, ~ ~ ~~~p -_ 3' ~

[3' (109)

Eq. (60) for the C (3) becomes

3 (110))

Figures 6 and 7 show the integrands for J= I and Z respectively, as
2

functions of p

Here again, the integrations were carried out in several parts, with the
2

method chosen to fit the behavior of the integrand in the various ranges of p

C 2 (3) is divided into the ranges 1 -5 p2 4 1.025; 1.025 < p2  1.050;

1.050 < p2 < 2. 90; and 2.90 p2 < 3.00. Thus,

(~) = ~4 45'J 4J(1)

where

7 - -T j- (-)"<<,-, '/ (112)r_

(113

-11" (114)

'4 ' ) 11 (115)
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Ot 2.0-

(IL

4.4

LO

:380

0
100 1.15 1.80 ['45 1.60 1.75 iL90 2.05 2.20 2.35 2.50 2.65 2.80 2.95 110

Fig. 6 Integrand of C 2 (z(3) from Eq. (110).
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To obtain ) write Eq. (105) as

2 2 2
Since p 1, the term (P- ) can be neglected, and

(99- (117)

Using the fact that L1 -(- cost(z)J = (1 - cos 2 ) and Eq. (112),

Since p is almost 1, Eq. (118) may be written as

IT -1- -- '3 - (119)

From Eqs. (8), (117), and a power series expansion of cos K, one finds that

/ = - + + (120)

Powers of ( p - 1) higher than three are neglected in Eq. (120) and 0( is chosen

so that the integrand of Eq. (119) is equal to 1. 15406, the value of the integrand of
2 z

Eq. (110) when p = P1  = 1.025. 0( equals 239.49. FromEq. (119)

and
b i,( " 3 /"

(p, ,5 I 42

/7 /9 (12z
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Thus we obtained

(1 = 0.0015 (1M3)

(Z))
(2 A 0.002Z9 (12Z4)

Four point Lagrangian integration coefficients are used to get the J2

f2(1) - 00026 (125)

iz(2) - 0.0081 (iz6)

(U)
33 is obtained by using Simpson's rule with interval sizes of 0.0Z5 in

z Z 2
p from 1.05 to 1.20, 0.05 in p from 1. Z0 to 1. 30, and . 10 in p from

1.30 to Z. 90

J() = . 1996 (IZ7)

5 - .ZZ67 (1z8)

14(1) is found by noting that an upper limit to the value of Eq. (115) is

obtained by setting cos Z Z = 1. Thus,

3:
S< - (,00026 (1Z9)

Since the cosine term of Eq. (115) has infinitely many oscillations in this region,

to a sufficient degree of accuracy, the factor (1 + cos Z29 ) can be replaced by

its mean value of unity in the integral for j .4(1) Thus, a good estimate of J4(

is J (1) and
max

1 = .0013 (130)
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The best estimate of J4( 2 ) is obtained in a similar fashion. Here, the
z (2)maximum value of (1 - cos 2 is unity so that the maximum value of J14(

(1)3 (I) The average value of (1 - cos Z20) is one-half, so that our best
,- Max) ()) 2
estimate of j4 is M or4 4 Max o

(2) .0007 (131)

Eq. (111) gives

21) (3) = .2038 (132)

C2(2) (3) = .2349 (133)

From Eq. (58), the collision integrals are found to be

c(1)
C (3) = .6750 (134)

(Z ) (3) = .4641 (135)
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SUMMARY

The collision integrals we evaluated are:

Repulsive Potential

A(1)(Z) = .397601 A(Z)(Z) = .5Z7843

A( 1 )(3) = .3115 A(2)(3) = .3533

Attractive Potential

C ( 1 ) = .806907 C(Z)(2) = 710970

C(i)(3) - .6750 C(Z)(3) = .4641
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APPENDIX A

In this appendix, an alternate derivation of the asymptotic equation,

Eq. (90), is given. Write

and make the substitution x = I-3 in 6d and z = 3- - in

Then

c~~~~( =  2) - , -ooz× (I +c)  ) + z - z (3

C + C - (A-3)
22.

Let x0 be a small positive number and take close to so that c 2is

much smaller than x 0  Then

X, (X,2- r- 77(7-7
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In order to evaluate i9 12 take z0 small and choose c much less

than z. Then,

2c 3CL 3

+ (A -7)

C- ~(A -8)

Therefore,

C (A-9)

Z 2By using the equation q = - z ,, we obtain

.2- Z' (A- O)

-"'"(A -lI)

Eq. (90)follows immediately.
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APPENDIX B

In this appendix, values for the angle of deflection X are given together

with a graph of X vs.4
2

The angle I is evaluated for values of q listed in Table a by using

Eqs. (9) and (63). Since in this case $2 > 900 , Eq. (81) is also used.

Four point Lagrangian interpolation coefficients are used to interpolate along both
14

the rows and columns in the table for F( k) found in Byrd and Friedman for

all: .q . For all values of q except q = .734, .741, and . 748, the four

point Lagrangian interpolation coefficients are used to interpolate along the column
2

of the table for K (k) . For the three values of q just given, it is more accurate

to use the equation
1 5

K=-- (B - 1)

where

(B -Z)

2 _ (B -3)

For values of p2 listed in Table b, Eqs. (8) and (106) are used to evalu-

ate X . Four point Lagrangian interpolation coefficients are used as explained

above to evaluate the elliptic function.

14 Ref. 10.

15 E. Jahnke and F. Emde, "Tables of Functions", (Dover, 1945), p. 73.
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Table a

-xq

( Z crit )

/5 Z q 3zqz

0 0 0 0.40778ZZ4 0,5z 5.872z

0.01976052 0.04 1.14Z81 0.43565336 0.54 6.14Z46

0.04065843 0.08 1.64778 0.4653775Z 0.56 6.4333Z

0.0628ZZOZ 0.02 Z.060Z2 0.4971807 0.58 6.74996

0.08640116 0.16 Z.43106 0.5313Z9Z 0.60 7.09994

0.11157215 0.Z0 Z.78Z04 0.5681396 0.6Z 7.49Z32

0.13854409 0.Z4 3.12378 0.6079917 0.64 7.94016

0.16756714 0.Z8 3.46410 0.6513440 0.66 8.46456

0. 19894356 0.3Z 3. 81040 0.6987600 0.68 9. 10288

0.Z3304Z44 0.36 4.16814 0.7509361 0.70 9.9313Z

0.27032007 0.40 4.54440 0.8087475 0.72 11. 13542

0.Z903Z41Z 0.4Z 4. 74186 0.8305105 0.727 11. 74086

0.311348Z9 0.44 4.94660 0.8531540 0.734 12. 55009

0.33348871 0.46 5.16038 0.87674009 0.741 13. 79346

0.35685478 0.48 5.38462 0.90133673 0.748 16.91616

0.38186008 0.50 5.6Z188 0.908560Z9 0.750
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Table b

2- ,3crit~

P Pzp z p -z

0-908561 3.000 00 1.08128 1.600 1.22953

0.908832 2.900 7.33Z31 1. 14471 1.500 1.01080

0.909693 2,800 5.88405 1. 23977 1.400 0.80593

0.911285 2.700 5.01853 1.39459 1.300 0.60135

0.913713 2.600 4.38617 1. 51426 1.250 0.50003

O, 917Z10 2,500 3.88115 1.68686 1.200 0.39967

0. 921956 Z, 400 3.45659 1.80551 1. 175 0.34957

0.928299 2. 300 3.08831 1.95835 1. 150 0.29959

0-936595 2.200 Z. 75875 2. 16338 1. 125 0.24961

0.947424 2. 100 2.46005 Z. 45458 1. 100 0. 19967

0.961500 2.000 2. 18679 Z 90595 1.075 0. 14979

0,979892 1.900 1. 92637 3.71930 1,050 0.09981

1.00415 1.800 1.68321 5.76345 1.025 0.04995

1.03666 1.700 1.45191 00 1.000 0
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